Part Number Hot Search : 
ZMC5271 LT10A06 20J32 GDZJ15 SPV1512 O55CC BUX16C PQ100
Product Description
Full Text Search
 

To Download TDA75610S-8ZX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. september 2014 docid025599 rev 5 1/42 tda75610slv 4 x 45 w power amplifier with full i 2 c diagnostics, high efficiency and low voltage operation datasheet - production data features ? multipower bcd technology ? mosfet output power stage ? dmos power output ? high efficiency (class sb) ? high output power capability 4x25 w/4 ? @ 14.4 v, 1 khz, 10% thd, 4 x 45 w max power ? 2 ? driving capability (64 w max power) ? full i 2 c bus driving: ? standby ? independent front/rear soft play/mute ? selectable gain 26 db /16 db (for low noise line output function) ? high efficiency enable/disable ?i 2 c bus digital diagnostics (including dc and ac load detection) ? flexible fault detection through integrated diagnostic ? dc offset detection ? four independent short circuit protection ? clipping detector pin with selectable threshold (2 %/10 %) ? standby/mute pin ? linear thermal shutdown with multiple thermal warning ? esd protection ? very robust against misconnections ? improved svr suppression during battery transients ? capable to operate down to 6 v (e.g. ?start-stop?) description the tda75610slv is a new quad bridge car radio amplifier, designed in b cd technology, in order to include a wide range of innovative features in a very compact and flexible device. the tda75610slv is equipped with the most complete diagnostics array that communicates the status of each speaker through the i 2 c bus. the dissipated output power under average listening condition is significantly reduced when compared to the conventional class ab solutions, thanks to the patented 'class sb' efficiency concept. tda75610slv has been designed to be very robust against several kinds of misconnections. it is moreover compliant to the most recent oem specifications for low voltage operation (so called 'start-stop' battery profile during engine stop), helping car manufacturers to reduce the overall emissions and thus contributing to environment protection. the st bcd in combination with 'class sb' efficiency and 'intelligent power' has been sold in million of units to most known car manufacturers, the tda75610slv is the latest and most compact member of this power amplifiers family. powerso36 flexiwatt27 (vert.) '!0'03 '!0'03 '!0'03 flexiwatt27 (smd) '!0'03 flexiwatt27 (horiz.) table 1. device summary order code package packing TDA75610S-8ZX flexiwatt27 (smd) tu b e tda75610s-8zt tape and reel tda75610s-48x flexiwatt27 (vert.) tube tda75610s -qlx flexiwatt27 (hor.) tube tda75610s-zsx powerso36 tu b e tda75610s-zst tape and reel www.st.com
contents tda75610slv 2/42 docid025599 rev 5 contents 1 block diagram and application ci rcuits . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.4 typical electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 diagnostics functional descript ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 output dc offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 ac diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 battery transitions management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 low voltage operation (?start stop?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 advanced battery management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 application suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.1 inputs impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.2 high efficiency introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9i 2 c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.1 i 2 c programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.2 address selection and i 2 c disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
docid025599 rev 5 3/42 tda75610slv contents 3 9.3 i 2 c bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.3.1 data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.3.2 start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.3.3 byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.3.4 acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10 software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 11 examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 12 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 13 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
list of tables tda75610slv 4/42 docid025599 rev 5 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. pin list description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 table 3. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 4. thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 5. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 table 6. double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 7. ib1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 table 8. ib2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 9. db1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 10. db2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 11. db3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table 12. db4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 13. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
docid025599 rev 5 5/42 tda75610slv list of figures 5 list of figures figure 1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 2. application circuit for flexiwatt packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 3. application circuit for powerso package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 4. pin connection diagram of the flexiwatt27 (top of view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 5. pin connection diagram of the powerso36 slug up (top of view). . . . . . . . . . . . . . . . . . . . . 8 figure 6. quiescent curren t vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 7. output power vs. supply voltage (4 ? ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 8. output power vs. supply voltage (2 ? ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 9. distortion vs. output power (4 ? , std) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 10. distortion vs. output power (4 ? , hi-eff). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 11. distortion vs. output power (2 ? , std) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 12. distortion vs. output power (2 ? , hi-eff). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 13. distortion vs. output power v s = 6 v (4 ? , std). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 14. distortion vs. frequency (4 ? ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 15. distortion vs. frequency (2 ? ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 16. crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 17. supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 18. power dissipation vs. average ou tput power (audio program simulation, 4 ? ). . . . . . . . . . 17 figure 19. power dissipation vs. average ou tput power (audio program simulation, 2 ? ). . . . . . . . . . 17 figure 20. total power dissipation and efficiency vs. output power (4 ? , hi-eff, sine). . . . . . . . . . . 17 figure 21. total power dissipation and efficiency vs. output power (4 ? , std, sine) . . . . . . . . . . . . . 17 figure 22. itu r-arm frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 17 figure 23. turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 24. svr and output behavior (case 1: without turn-o n diagnostic) . . . . . . . . . . . . . . . . . . . . . 18 figure 25. svr and output pin behavior (case 2: with turn -on diagnostic) . . . . . . . . . . . . . . . . . . . . . 19 figure 26. short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 27. load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 28. load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 figure 29. restart timing without diagnosti c enable (permanent) - each 1 ms time, a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 30. restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 31. current detection high: load impedance |z| vs . output peak voltage . . . . . . . . . . . . . . . . . 22 figure 32. current detection low: load impedance |z| vs . output peak voltage . . . . . . . . . . . . . . . . . . 22 figure 33. thermal foldback diag ram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 34. worst case battery cranking curv e sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 35. worst case battery cranking curv e sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 36. upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 figure 37. inputs impedance matching circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 38. high efficiency - basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 39. data validity on the i 2 c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 40. timing diagram on the i 2 c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 41. acknowledge on the i 2 c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 42. flexiwatt27 (horizontal) mechanical data an d package dimensions. . . . . . . . . . . . . . . . . . 37 figure 43. flexiwatt27 (vertical) mechanical data and pa ckage dimensions . . . . . . . . . . . . . . . . . . . . 38 figure 44. flexiwatt27 (smd) mechanical data and packag e dimensions . . . . . . . . . . . . . . . . . . . . . 39 figure 45. powerso36 (slug up) mechanical data and pack age dimensions . . . . . . . . . . . . . . . . . . . 40
block diagram and application circuits tda75610slv 6/42 docid025599 rev 5 1 block diagram and application circuits figure 1. block diagram figure 2. application circuit for flexiwatt packages 3hort#ircuit 0rotection $iagnostic )#"53 -ute -ute 4hermal 0rotection $ump #lip $etector ). ). ). ). 6## 6## #$?/54 /54 /54 /54 /54 /54 /54 /54 /54 3hort#ircuit 0rotection $iagnostic 3hort#ircuit 0rotection $iagnostic 3hort#ircuit 0rotection $iagnostic d" d" d" d" 2eference !$sel #,+ $!4! 362 !#? '.$ 4! " 3'.$ !$3%, )#$)3 07 ?'.$ & & 2 2 34 "9-54% '!0'03 6cc 6cc # ?& # ?& 6s 666cc /54     $!4! 34 "9 )  #"53 #,+     ). #?& /54       ).  #?& #,+  4$!3,6 /54      ). ? #?& ). ).  #?&   /54 4! "  3'.$ !#'.$ 362       !$3%,)#$)3 
).   # ?& 2k 7   #$ 6  # ?&  




?&istheminimumrecommendedvalue ?&suggestedasw ell 2efertochapterforconnectionsuggestions '!0'03 k 7
docid025599 rev 5 7/42 tda75610slv block diagram and application circuits 41 figure 3. application circuit for powerso package 6cc # ?& 6 6 6cc # ?& 6cc 6cc 6cc 6s /54 666cc         $!4! )  #"53  ). #?& /54      #  ?& #,+  /54      ). #?& #?& ). ).  #?&   7'$6/9=6; /54 4! "  3'.$       ). ?   !$3%,)  #$)3 


# ?& 2k 7   #$ 6  # ?&  #$ 
2efertochapterforconnectionsuggestions 

?&istheminimumrecommendedvalue ?&suggestedas well 34 "9 !#'.$ 362 '!0'03 k 7
pin description tda75610slv 8/42 docid025599 rev 5 2 pin description for channel name reference: ch1 = lf, ch2 = lr, ch3 = rf and ch4 = rr. figure 4. pin connection diagram of the flexiwatt27 (top of view) figure 5. pin connection diagram of the powerso36 slug up (top of view) '!0'03 4! " &lexiwattvertical 34"9 07'.$ /54 #$ /54 /54 6 ## /54 07'.$ /54 362 ). ). 3'.$ ). ). !#'.$ /54 07'.$ /54 6 ## #+ /54 /54 07'.$ $!4! !$3%,)#$)3                                                       4! " 34"9 07'.$ /54 #$ /54 /54 6 ## /54 07'.$ /54 362 ). ). 3?'.$ ). ). !#'.$ /54 07'.$ /54 6 ## #+ /54 /54 07'.$ $!4! !$3%,)#$)3 &lexiwatthorizontal3-$ '!0'03                                     4! " /54 #+ 07'.$ .# 6## $!4! /54 !$3%, /54 34"9 6## 07'.$ .# .# #$ /54 .# /54 6## 07'.$ /54 !#'.$ ). ). 3'.$ .# ). .# ). 362 .# /54 07'.$ 6## /54 '!0'03
docid025599 rev 5 9/42 tda75610slv pin description 41 table 2. pin list description pin # (powerso36) pin # (flexiwatt27) pin name function 11tab- 2 22 out4+ channel 4, + output 323cki 2 c bus clock/he selector 4 25 pwgnd4 channel 4 output power ground 5 - nc not connected 6 - vcc4 supply voltage pin4 726datai 2 c bus data pin/gain selector 8 24 out4- channel 4, - output 9 27 adsel address selector pin/ i 2 c bus disable (legacy select) 10 4 out2- channel 2, - output 11 2 stby standby pin 12 21 vcc2 supply voltage pin2 13 3 pwgnd2 channel 2 output power ground 14 - nc not connected 15 - nc not connected 16 5 cd clip detector output pin 17 6 out2+ channel 2, + output 18 - nc not connected 19 8 out1- channel 1, - output 20 7 vcc1 supply voltage pin1 21 9 pwgnd1 channel 1 output power ground 22 10 out1+ channel 1, + output 23 - nc not connected 24 11 svr svr pin 25 12 in1 input pin, channel 1 26 - nc not connected 27 13 in2 input pin, channel 2 28 - nc not connected 29 14 sgnd signal ground pin 30 15 in4 input pin, channel 4 31 16 in3 input pin, channel 3 32 17 ac gnd ac ground 33 18 out3+ channel 3, + output 34 19 pwgnd3 channel 3 output power ground 35 - vcc3 supply voltage pin3 36 20 out3- channel 3, - output
electrical specifications tda75610slv 10/42 docid025599 rev 5 3 electrical specifications 3.1 absolute maximum ratings 3.2 thermal data table 3. absolute maximum ratings symbol parameter value unit v op operating supply voltage (1) 1. for r l = 2 ? the output current limit might be reached for v op > 16 v; thus triggering self-protection. 18 v v s dc supply voltage 28 v v peak peak supply voltage (for t max = 50 ms) 50 v gndmax ground pins voltage -0.3 to 0.3 v v ck, v data ck and data pin voltage -0.3 to 6 v v cd clip detector voltage -0.3 to vop v v stby stby pin voltage -0.3 to vop v i o output peak current (not repetitive t max = 100ms) 8 a output peak current (r epetitive f > 10 khz) 6 p tot power dissipation t case = 70c 85 w t stg , t j storage and junction temperature (2) 2. a suitable dissipation system should be used to keep t j inside the specified limits. -55 to 150 c t amb operative temperatur e range -40 to 105 c table 4. thermal data symbol parameter powerso flexiwatt unit r th j-case thermal resistance junction-to-case max. 1 1 c/w
docid025599 rev 5 11/42 tda75610slv electrical specifications 41 3.3 electrical characteristics refer to the test circuit, v s = 14.4 v; r l = 4 ? ; f = 1 khz; g v = 26 db; t amb = 25 c; unless otherwise specified. t ested at t amb = 25 c and t hot = 105 c; functionality guaranteed for t j = -40 c to 150 c. table 5. electrical characteristics symbol parameter test cond ition min. typ. max. unit general characteristics v s supply voltage range r l = 4 ? 6-18 v r l = 2 ? 6 - 16 (1) i d total quiescent drain current - - 155 250 ma r in input impedance - 45 60 70 k ? v am min. supply mute threshold ib1(d7) = 1 signal attenuation -6 db 7-8 v ib1(d7) = 0 (default); (2) signal attenuation -6 db 5-5.8 v os offset voltage mute & play -80 0 80 mv v dth dump threshold - 18.5 - 20.5 v i sb standby current v standby = 0 - 1 5 a svr supply voltage rejection f = 100 hz to 10 khz; v r = 1 vpk; r g = 600 ? 60 70 - db t on turn on timing (mute play transition) d2/d1 (ib1) 0 to 1 - 25 50 ms t off turn off timing (play mute transition) d2/d1 (ib1) 1 to 0 - 25 50 ms th warn1 average junction temperature for th warning 1 db1 (d7) = 1 - 160 - c th warn2 average junction temperature for th warning 2 db4 (d7) = 1 - 145 - th warn3 average junction temperature for th warning 3 db4 (d6) = 1 - 125 - audio performances p o output power max. power (3) v s = 15.2 v, r l = 4 ? -45-w thd = 10 %, r l = 4 ? thd = 1 %, r l = 4 ? 23 - 27 22 - w w r l = 2 ? ; thd 10 % r l = 2 ? ; thd 1 % r l = 2 ? ; max. power (3) v s = 14.4 v - 44 34 68 - w w w max power@ v s = 6 v, r l = 4 ? -5-w
electrical specifications tda75610slv 12/42 docid025599 rev 5 thd total harmonic distortion p o = 1 w to 10 w; std mode he mode; p o = 1.5 w he mode; p o = 8 w - 0.015 0.05 0.1 0.1 0.1 0.5 % % % p o = 1-10 w, f = 10 khz - 0.15 0.5 % g v = 16 db; std mode v o = 0.1 to 5 v rms -0.020.05% c t cross talk f = 1 khz to 10 khz, r g = 600 ? 50 65 - db g v1 voltage gain 1 - 25 26 27 db g v1 voltage gain match 1 - -1 - 1 db g v2 voltage gain 2 - 15 16 17 db g v2 voltage gain match 2 - -1 - 1 db e in1 output noise voltage 1 r g = 600 ? 20 hz to 22 khz - 45 60 v e in2 output noise voltage 2 r g = 600 ? ; gv = 16d b 20 hz to 22 khz -2030v bw power bandwidth - 100 - - khz cmrr input cmrr v cm = 1 vpk-pk; r g = 0 ? -70-db v oitu itu pop filter output voltage standby to mute and mute to standby transition t amb = 25 c, itu-r 2k, c svr = 10 f v s = 14.4 v -7.5 - +7.5 mv mute to play transition t amb = 25 c, itu-r 2k, v s = 14.4 v (4) -7.5 - +7.5 mv play to mute transition t amb = 25 c, itu-r 2k, v s = 14.4 v (5) -7.5 - +7.5 mv clip detector cd lk clip det. high leakage current cd off / v cd = 6 v - 0 5 a cd sat clip det sat. voltage cd on; i cd = 1 ma - - 300 mv cd thd clip det thd level d0 (ib1) = 1 5 10 15 % d0 (ib1) = 0 123% control pin characteristics v sby standby/mute pin for standby - 0 - 1.2 v v mu standby/mute pin for mute - 2.9 - 3.5 v v op standby/mute pin for operating - 4.5 - 18 v i mu standby/mute pin current v st-by/mute = 4.5 v - 1 5 a v st-by/mute < 1.2 v - 0 5 a table 5. electrical ch aracteristics (continued) symbol parameter test cond ition min. typ. max. unit
docid025599 rev 5 13/42 tda75610slv electrical specifications 41 a sb standby attenuation - 90 110 - db a m mute attenuation - 80 100 - db turn on diagnostics 1 (power amplifier mode) pgnd short to gnd det. (below this limit, the output is considered in short circuit to gnd) power amplifier in standby --1.2v pvs short to vs det. (above this limit, the output is considered in short circuit to vs) vs -1.2 - - v pnop normal operation thresholds. (within these limits, the output is considered without faults). 1.8 - vs -1.8 v lsc shorted load det. - - 0.5 ? lop open load det. 85 - - ? lnop normal load det. 1.5 - 45 ? turn on diagnostics 2 (line driver mode) pgnd short to gnd det. (below this limit, the output is considered in short circuit to gnd) power amplifier in standby - - 1.2 v pvs short to vs det. (above this limit, the output is considered in short circuit to vs) - vs -1.2 - - v pnop normal operation thresholds. (within these limits, the output is considered without faults). - 1.8 - vs -1.8 v lsc shorted load det. - - - 1.5 ? lop open load det. - 330 - - ? lnop normal load det. - 7 - 180 ? permanent diagnostics 2 (power amplifier mode or line driver mode) pgnd short to gnd det. (below this limit, the output is considered in short circuit to gnd) power amplifier in mute or play, one or more short circuits protection activated --1.2v pvs short to vs det. (above this limit, the output is considered in short circuit to vs) vs -1.2 - - v pnop normal operation thresholds. (within these limits, the output is considered without faults). 1.8 - vs -1.8 v l sc shorted load det. power amplifier mode - - 0.5 ? line driver mode - - 1.5 ? table 5. electrical ch aracteristics (continued) symbol parameter test cond ition min. typ. max. unit
electrical specifications tda75610slv 14/42 docid025599 rev 5 v o offset detection power amplifier in play, ac input signals = 0 1.5 2 2.5 v i nlh normal load current detection v o < (v s -5)pk, ib2 (d7) = 0 500 - - ma i olh open load current detection - - 250 ma i nll normal load current detection v o < (v s -5)pk, ib2 (d7) = 1 250 - - ma i oll open load current detection - - 125 ma i 2 c bus interface s cl clock frequency - - - 400 khz v il input low voltage - - - 1.5 v v ih input high voltage - 2.3 - - v 1. when v s > 16 v the output current limit is reached (triggering embedded internal protections). 2. in legacy mode only low threshold option is available. 3. saturated square wave output. 4. voltage ramp on stby pin: from 3.3 v to 4.2 v in t 40 ms. in case of i 2 c mode command ib1(d1) = 1 (mute unmute rear channels) and/or ib1(d2) = 1 (mute unmute front channels) must be transmitted before to start the voltage ramp on stby pin. 5. voltage ramp on stby pin: from 4.05 v to 3.55 v in t 40 ms. in case of i 2 c mode command ib1(d1) = 0 unmute mute rear channels) and/or ib1(d2) = 0 (unmute mute front channels) must be not transmitted before to start the voltage ramp on stby pin. table 5. electrical ch aracteristics (continued) symbol parameter test cond ition min. typ. max. unit
docid025599 rev 5 15/42 tda75610slv electrical specifications 41 3.4 typical electrical characteristics curves figure 6. quiescent current vs. supply voltage f igure 7. output power vs. supply voltage (4 ? ) figure 8. output power vs. supply voltage (2 ? ) figure 9. distortion vs. output power (4 ? ,std) figure 10. distortion ? vs. ? output ? power ( 4 ? ,hi \ eff) figure 11. distortion vs. output power (2 ? ,std) *$3*36                  ,t p$  9v 9  9lq  12 /2$'6  *$3*36                      3r :  9v 9  7+'  5/  7  i n+] 7+'  3rp d[ *$3*36                       3r :  9v 9  5/  7  i n+] 7+'  7+'  3r p d[ *$3*36         7+'   3r :  67$1'$5'02'( 9v 9 5/  7  i n +] i n+] *$3*36         7+'   3r : i  n+]  i   n+]  +, ()) 02' ( 9v 9 5/  7  *$3*36         7+'   3r :  67$1'$5'02'( 9v 9 5/  7  i n+] i n+]
electrical specifications tda75610slv 16/42 docid025599 rev 5 figure 12. distortion ? vs. ? output ? power ? ( 2 ? ,hi \ eff) figure 13. distortion vs. output power v s = 6 v (4 ? , std) figure 14. distortion vs. frequency (4 ? ) figure 15. distortion vs. frequency (2 ? ) figure 16. crosstalk vs. frequency fi gure 17. supply voltage rejection vs. frequency *$3*36         7+'    3 r :  +, ( )) 0 2' (  9v 9 5/  7  i  n+] i  n+] *$3*36         7+'   3r :  67$1'$5'02' ( 9v 9 5/  7  i n+] i n+] *$3*36               7+'  i +] 67$1'$5'02'( 9v 9 5/  7 3r :  *$3*36               7+'  i +] 67$1'$5'02'( 9v 9 5/  7 3r :  *$3*36       i +]          &52667$/. g% 67$1'$5'02'( 5/  7 5j  7 3r :  *$3*36         i +]             695 g% 67' 02'( 5j  7 9ulssoh 9upv
docid025599 rev 5 17/42 tda75610slv electrical specifications 41 figure 18. power dissipation vs. average output power (audio program simulation, 4 ? ) figure 19. power dissipation vs. average output power (audio program simulation, 2 ? ) figure 20. total power dissipation and efficiency vs. output power (4 ? , hi-eff, sine) figure 21. total power dissipation and efficiency vs. output power (4 ? , std, sine) figure 22. itu r-arm frequency response, weighting filter for transient pop '!0'03            3wrw : 3r :  9v 9 5/  7 *$866,$112,6( 67'02'( +,())02'( &/,3 67$57 '!0'03 +,())02'( 3wrw : 3r : 67'02'( &/,3 67$57            9v 9 7 *$866,$112,6( 5/  '!0'03                        3wrw : 3wrw 3r : 9v 9 5/  7 i n+] +(prgh h   h '!0'03            0tot7 0o7          h             h 0tot 6s 6 2,  7 fk(z /utputattenuationd"                (z '!0'03
diagnostics functional description tda75610slv 18/42 docid025599 rev 5 4 diagnostics functional description 4.1 turn-on diagnostic it is recommended to activate this function at the turn-on (standby out) through an i 2 c bus request. detectable output faults are: ? short to gnd ? short to vs ? short across the speaker ? open speaker to verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse ( figure 23 ) is internally generated, sent thro ugh the speaker(s) and sunk back.the turn on diagnostic status is internally stored until a successive diagnostic pulse is requested (after a i 2 c reading). if the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (during the pulse the power stage stays 'off', showing high impedance at the outputs). afterwards, when the amplifier is biased, the permanent diagnostic takes place. the previous turn-on state is kept unt il a short appears at the outputs. figure 23. turn-on diagnostic: working principle figure 24 and 25 show svr and output waveforms at the turn-on (standby out) with and without turn-on diagnostic. figure 24. svr and output behavior (case 1: without turn-on diagnostic) ,vrxufh 9va9 ,vlqn w pv , p$ ,vlqn ,vrxufh apv 0hdvxuhwlph '!0'03 "iaspower ampt urn on t $iagnostic %nable 0ermanent 0ermanent$iagnosticsdataouput permittedtime 0ermanentdiagnostic acquisitiontimems4yp )#"$!4! 6svr /ut &!5,4 event 2ead$ata '!0'03
docid025599 rev 5 19/42 tda75610slv diagnostics functional description 41 figure 25. svr and output pin behavior (case 2: with turn-on diagnostic) the information related to the outputs status is read and memorized at the end of the current pulse plateau. the acquisition time is 10 0 ms (typ.). no audible noise is generated in the process. as for short to gnd / vs the fault-detection thresholds remain unchanged from 26 db to 16 db gain setting. they are as follows: figure 26. short circuit detection thresholds concerning short across the speaker / open speaker, the threshold varies from 26 db to 16 db gain setting, since diff erent loads are expected (either normal speaker's impedance or high impedance). the values in case of 26 db gain are as follows: figure 27. load detection thresholds - high gain setting if the line-driver mode (gv= 16 db and line driver mode diagnostic = 1) is selected, the same thresholds will change as follows: figure 28. load detection threshold - low gain setting "iaspoweramp turn on permitte dt ime 4u rn ond iagnostic acqu isi tiontim ems 4yp t 2ead$ata 0ermanentdiagn ost ic acqui sit iontimems 4yp 0ermanent$iagno st ics dat aout put permitte dtime $iagnost ic%nable 4ur n on 4urn on $iagn ost ics dataout pu t per mitt edti me )#"$!4! 6svr /ut $iagn ost ic% nable 0erman ent &!5,4 event '!0'03 3#to'.$ x 3#to6s 6 6 6 3 6 6 3 x .ormal/peration 6 6 3 6 '!0'03 3#across,oad x /pen,oad 6  7  7 )nfinite x .ormal/peration  7  7 '!0'03 3#across,oad x /pen,oad  7  7  7 infinite x .ormal/peration  7  7 '!0'03
diagnostics functional description tda75610slv 20/42 docid025599 rev 5 4.2 permanent diagnostics detectable conventional faults are: ? short to gnd ? short to vs ? short across the speaker the following additional feature is provided: ? output offset detection the tda75610slv has 2 operating status: 1. restart mode. the diagnostic is not enabled. each audio channel operates independently of each other. if any of th e a.m. faults occurs, only the channel(s) interested is shut down. a check of th e output status is made every 1 ms ( figure 29 ). restart takes place when the overload is removed. 2. diagnostic mode. it is enabled via i 2 c bus and it self activates if an output overload (such as to cause the intervention of the shor t-circuit protection) o ccurs to the speakers outputs. once activated, the diagnost ics procedure develops as follows ( figure 30 ): ? to avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1m s: if normal situation (no overloads) is detected, the diagnostic is not perf ormed and the channel returns active. ? instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. ? after a diagnostic cycle, the audio channel interested by the fault is switched to restart mode. the relevant data are stored inside the device and can be read by the microprocessor. when one cycle has terminated, the next one is activated by an i 2 c reading. this is to ensure contin uous diagnostics throughout the car- radio operating time. ? to check the status of the device a samp ling system is needed. the timing is chosen at microprocessor level (over half a second is recommended). figure 29. restart timing without diagnostic enable (permanent) - each 1 ms time, a sampling of the fault is done figure 30. restart timing with diagnostic enable (permanent) t  m3 m3 m3 m3 m3 /vercur rentand shor t circuit protect ioni ntervent ion ieshor tcircui tt o'.$ 3hor tci rcui tremoved /ut '!0'03 t /vercurrent andshort circuitprotecti on in terventi on ies hortc ircui tto'.$ 3ho rtcircuit removed  m3 m3 m3 m3 '!0'03
docid025599 rev 5 21/42 tda75610slv diagnostics functional description 41 4.3 output dc offset detection any dc output offset exceeding 2 v are signa lled out. this inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a dc component to the inputs, so putting the speakers at risk of overheating. this diagnostic has to be performed with low-level output ac signal (or vin = 0). the test is run with selectable time duration by microprocessor (from a "start" to a "stop" command): ? start = last reading operation or setting ib1 - d5 - (offset enable) to 1 ? stop = actual reading operation excess offset is signalled out if it is persistent of all the assign ed testing time. this feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. 4.4 ac diagnostic it is targeted at detecting accidental disconnec tion of tweeters in 2-way speaker and, more in general, presence of capacitive (ac) coupled loads. this diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequen cies if the tweeter gets disconnected, because the remaining speaker (w oofer) would be out of its operating range (high impedance). the diagnostic decision is made according to peak output current thresholds, and it is enabled by setting (ib2 -d2) = 1. two different detection levels are available: ? high current threshold ib2 (d7) = 0 iout > 500 mapk = normal status iout < 250 mapk = open tweeter ? low current threshold ib2 (d7) = 1 iout > 250 mapk = normal status iout < 125 mapk = open tweeter to correctly implement this feature, it is nece ssary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mapk with ib2(d7) = 0 (higher than 250 mapk with ib2(d7) = 1) in normal conditions and lower than 250 mapk with ib2(d7) = 0 (lower than 125 mapk with ib2(d7)=1) should the parallel tweeter be missing. the test has to last for a minimum number of 3 sine cycles starting from the activation of the ac diagnostic function ib2) up to the i 2 c reading of the results (measuring period). to confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above threadless over all th e measuring period, else an "ope n tweeter" message will be issued. the frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). high-frequency tones (> 10 khz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off. figure 31 and 32 show the load impedance as a functi on of the peak output voltage and the relevant diagnostic fields.
diagnostics functional description tda75610slv 22/42 docid025599 rev 5 it is recommended to keep output voltage always below 8 v (high threshold case) or 4 v (low threshold case) to prevent the circuit being saturated (causing wrong detection cases). this feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. figure 31. current detection high: load impedance |z| vs. output peak voltage figure 32. current detection low: load impedance |z| vs. output peak voltage           6out 0eak ,o ad\z\/hm )outpeak m! )outpeak m! ,owcurrentdetectionarea /penload $ofthe$"xbyres (ighcurrentdetectionarea .ormalload $ofthe$"xbytes )"$  '!0'03                 6out0eak ,oad\z\/hm )outpeak m! )outpeak m! ,owcurrentdetectionarea /penload $ofthe$"xbyres (ighcurrentdetectionarea .ormalload $ofthe$"xbytes )"$  '!0'03
docid025599 rev 5 23/42 tda75610slv multiple faults 41 5 multiple faults when more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. the others are notified after successive cycles of i 2 c reading and faults removal, provided that the diagnost ic is enabled. this is true for both kinds of di agnostic (turn on and permanent). the table below shows all the couples of double-fault possible. it should be taken into account that a short circuit with the 4 ohm s peaker unconnected is considered as double fault. in permanent diagnostic the table is the same , with only a difference concerning open load(*), which is not among the recognizable faults. should an open load be present during the device's normal working, it w ould be detected at a subsequent turn on diagnostic cycle (i.e. at the su ccessive car radio turn on). 5.1 faults availability all the results coming from i 2 c bus, by read operations, are the consequence of measurements inside a defined period of time. if the fault is stable throughout the whole period, it will be sent out. to guarantee always resident functions, every kind of diagnostic cycles (turn on, permanent, offset) will be reactivate after any i 2 c reading operation. so, when the micro reads the i 2 c, a new cycle will be able to start, but th e read data will come from the previous diag. cycle (i.e. the device is in turn on st ate, with a short to gnd, then the short is removed and micro reads i 2 c. the short to gnd is still presen t in bytes, because it is the result of the previous cycle. if another i 2 c reading operation occurs, the bytes do not show the short). in general to observe a change in diagnostic bytes, two i 2 c reading operations are necessary. table 6. double fault table for turn on diagnostic s. gnd s. vs s. across l. open l. s. gnd s. gnd s. vs + s. gnd s. gnd s. gnd s. vs / s. vs s. vs s. vs s. across l. / / s. across l. n.a. open l. / / / open l. (*)
thermal protection tda75610slv 24/42 docid025599 rev 5 6 thermal protection thermal protection is implemented through thermal foldback ( figure 33 ). thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating ra nge. this effectively limits the output power capability of the device thus re ducing the temperatur e to acceptable leve ls without totally interrupting the operation of the device. the output power will decrease to the point at which ther mal equilibrium is reached. thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. should the device cool, the audio level will in crease until a new th ermal equilibrium is reached or the amplif ier reaches full power. thermal foldback will reduce the audio output level in a linear manner. three thermal warnings are available through the i 2 c bus data. after thermal shut down threshold is reached, the cd could toggle (as shown in figure 33 ) or stay low, depending on signal level. figure 33. thermal foldback diagram 6.1 fast muting the muting time can be shorte ned to less than 1.5 ms by setting (ib2) d5 = 1. this option can be useful in transient battery situatio ns (i.e. during car engine cranking) to quickly turnoff the amplifier to avoid any audible effects caused by noise/transients being injected by preamp stages. the bit must be set back to ?0? shortly after the mute transition. 4j # 4(3( 34!24 4(3( %.$ 6out 4(7!2. /. 4j # 6out 4j # 3$ withsameinput signal 4 3$ #$out 4(7! 2. /. 4(7!2. /. '!0'03  4yp  4yp  4yp
docid025599 rev 5 25/42 tda75610slv battery transitions management 41 7 battery transitions management 7.1 low voltage operation (?start stop?) the most recent oem specifications require auto matic stop of car engine at traffic light, in order to reduce emissions of polluting substances. the tda75610slv, thanks to its innovating design, allows to go on playing s ound when battery falls down to 6/7v during such conditions, without prod ucing pop noise. the maximum system power will be reduced accordingly. supported battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions. figure 34. worst case battery cranking curve sample 1 v1 = 12 v; v2 = 6 v; v3 = 7 v; v4 = 8 v t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms figure 35. worst case battery cranking curve sample 2 v1 = 12 v; v2 = 6 v; v3 = 7 v t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms 9 9  9  9  9  w  w  w  w  w  w  w  9 edww w v *$3*36 *$3*36 9 9 w v 9  9  9  w  w  w  w  w  edww
battery transitions management tda75610slv 26/42 docid025599 rev 5 7.2 advanced battery management in addition to compatibility with low v batt , the tda75610slv is able to sustain upwards fast battery transitions (like the one showed in figure 36 ) without causing unwanted audible effect, thanks to the in novative circuit topology. figure 36. upwards fast battery transitions diagram '!0'03
docid025599 rev 5 27/42 tda75610slv application suggestion 41 8 application suggestion 8.1 inputs impedance matching figure 37. inputs impedance matching circuit the above is a simplified input stage where it is visible that the ac-gnd impedance (60 k ? ) is the same as the input one. during battery variations the svr voltage is moved and v in and v ac-gnd tracks it through the two r-c networks. any differences of this two time constants can produce a differential input voltage, which can produce a noise. consequently, any additional passive components at the inputs (other than the input capacitors) such as series resistance or r dividers must be comp ensated for at ac-gnd level by connecting the same equivalent resistance in series to c ac-gnd . a good 1:1 matching (z ac-gnd = z in ) is therefore recommended to minimize pop. this rule applies to both "4-ch operation" and "2-ch operation", as any unused input has be ac- grounded (through the same c in value). )n 362 362charge circuit k 7 k 7 6 ). 0lay 0- ' 6 !# '.$ !#'.$ '!0'03
application suggestion tda75610slv 28/42 docid025599 rev 5 8.2 high efficiency introduction thanks to its operating principle, the tda7 5610slv obtains a substantial reduction of power dissipation from traditional class-ab amp lifiers without being affected by the massive radiation effects and complex circuitry nor mally associated with class-d solutions. the high efficiency operating principle is bas ed on the use of bridge structures which are connected by means of a power switch. in particular, as shown in figure 1 , ch1 is linked to ch2, while ch3 to ch4. the sw itch, controlled by a logic ci rcuit which senses the input signals, is closed at low volumes (output po wer steadily lower than 2.5 w) and the system acts like a "single bridge" with double load. in this case, the total power dissipation is a quarter of a double bridge. due to its structure, the highest efficiency le vel can be reached when symmetrical loads are applied on channels sharing the same switch. figure 38. high efficiency - basic structure when the power demand increases to more th an 2.5 w, the system behavior is switched back to a standard double bridge in order to guarantee the maximum output power, while in the 6 v start-stop devices the high efficiency mode is automatically disabled at low v cc (7.3 v 0.3 v). no need to re-program it when v cc goes back to normal levels. in the range 2-4 w (@ v cc = 14.4 v, r l = 4 ? ), with the high efficiency mode, the dissipated power gets up to 50 % less than the value obtained with the standard mode. '!0'03 n n & channel (igh impedance "uffer 2 channel 6in& 6in2 #/.42/, ,/')# )?2 )?20 )?& &- &0 2- 20 &ront 2ear
docid025599 rev 5 29/42 tda75610slv i 2 c bus 41 9 i 2 c bus 9.1 i 2 c programming/r eading sequences ? a correct turn on/off sequence with respect to the diagnostic timings and producing no audible noises could be as follo ws (after battery connection): ? turn-on: pin2 > 4.5 v --- 10 ms --- (stand-by out + diag enable) --- 1 s (min) --- muting out ? turn-off: muting in - wa it for 50 ms - hw st-by in (st-by pin . 1.2 v) ? car radio installation: pin2 > 4.5 v --- 10 ms diag enable (write) --- 200 ms --- i 2 c read (repeat until all faults disappear). ? offset test: device in play (no si gnal) -- offset enable - 30 ms - i 2 c reading (repeat i 2 c reading until high-offset message disappears). 9.2 address selection and i 2 c disable when the adsel/i2cdis pin is left open the i 2 c bus is disabled and the device can be controlled by the stby/mute pin. in this status (no - i 2 c bus) the ck pin enables the hi gh-efficiency mode (0 = std mode; 1 = he mode) and the data pin sets the gain (0 = 26 db; 1 = 16 db). when the adsel/i2cdis pin is connected to gnd the i 2 c bus is active with address <1101100-x>. to select the other i 2 c address a resistor must be connected to adsel/i2cdis pin as following: ? 0 < r < 1 k ? : i 2 c bus active with address <1101100x> ? 11 k ? < r < 21 k ? : i 2 c bus active with address <1101101x> ? 40 k ? < r < 70 k ? : i 2 c bus active with address <1101110x> ? r > 120 k ? : legacy mode (x: read/write bit sector) 9.3 i 2 c bus interface data transmission from microprocessor to the tda75610slv and viceversa takes place through the 2 wires i 2 c bus interface, consisting of the two lines sda and scl (pull-up resistors to positive supply voltage must be connected). 9.3.1 data validity as shown by figure 39 , the data on the sda line must be stable during the high period of the clock. the high and low state of the da ta line can only change when the clock signal on the scl line is low.
i 2 c bus tda75610slv 30/42 docid025599 rev 5 9.3.2 start and stop conditions as shown by figure 40 a start condition is a high to low transition of the sda line while scl is high. the stop conditio n is a low to high transition of the sda line while scl is high. 9.3.3 byte format every byte transferred to the sda line must cont ain 8 bits. each byte must be followed by an acknowledge bit. the msb is transferred first. 9.3.4 acknowledge the transmitter* puts a resist ive high level on the sda line during the acknowledge clock pulse (see figure 41 ). the receiver** has to pull-down (low) the sda line during the acknowledge clock pulse, so that the sda lin e is stable low during this clock pulse. * transmitter ? master p) when it writes an address to the tda75610slv ? slave (tda75610slv) when the p reads a data byte from tda75610slv ** receiver ? slave (tda75610slv) when the p writ es an address to the tda75610slv ? master (p) when it reads a data byte from tda75610slv figure 39. data validity on the i 2 c bus figure 40. timing diagram on the i 2 c bus figure 41. acknowledge on the i 2 c bus 3$! 3#, $!4!,).% 34!",% $!4! 6!,)$ #(!.'% $!4! !,,/7%$ '!0'03 3#, 3$! 34!24 )  #"53 34/0 '!0'03 3#,  -3"  3$! 34!24 !#+./7,%$'-%.4 &2/-2%#%)6%2 '!0'03
docid025599 rev 5 31/42 tda75610slv software specifications 41 10 software specifications all the functions of the tda7 5610slv are activated by i 2 c interface. the bit 0 of the "address byte" defines if the next bytes are write instruction (from p to tda75610slv) or read instruction (from tda75610slv to p). chip address x = 0 write to device x = 1 read from device if r/w = 0, the p sends 2 "ins truction bytes": ib1 and ib2. (*) address selector bit, please refe r to address selection description on chapter 9.2 . d7 d0 11011(*)(*)xd8 hex table 7. ib1 bit instruction decoding bit d7 supply transition mute threshold high (d7 = 1) supply transition mute threshold low (d7 = 0) d6 diagnostic enable (d6 = 1) diagnostic defeat (d6 = 0) d5 offset detection enable (d5 = 1) offset detection defeat (d5 = 0) d4 front channel (ch1, ch3) gain = 26 db (d4 = 0) gain = 16 db (d4 = 1) d3 rear channel (ch2, ch4) gain = 26 db (d3 = 0) gain = 16 db (d3 = 1) d2 mute front channels (d2 = 0) unmute front channels (d2 = 1) d1 mute rear channels (d1 = 0) unmute rear channels (d1 = 1) d0 cd 2% (d0 = 0) cd 10% (d0 = 1)
software specifications tda75610slv 32/42 docid025599 rev 5 if r/w = 1, the tda75610slv sends 4 "diagnosti cs bytes" to p: db1, db2, db3 and db4. table 8. ib2 bit instruction decoding bit d7 current detection threshold high th (d7 = 0) low th (d7 =1) d6 0 d5 normal muting time (d5 = 0) fast muting time (d5 = 1) d4 stand-by on - amplifier not working - (d4 = 0) stand-by off - amplifier working - (d4 = 1) d3 power amplifier mode diagnostic (d3 = 0) line driver mode diagnostic (d3 = 1) d2 current detection diagnostic enabled (d2 =1) current detection diagnostic defeat (d2 =0) d1 right channel power amplifier working in standard mode (d1 = 0) power amplifier working in high efficiency mode (d1 = 1) d0 left channel power amplifier working in standard mode (d0 = 0) power amplifier working in high efficiency mode (d0 = 1) table 9. db1 bit instruction decoding bit d7 thermal warning 1 active (d7 = 1), t j = 160 c (typ) - d6 diag. cycle not activated or not terminated (d6 = 0) diag. cycle terminated (d6 = 1) - d5 channel lf (ch1) current detection ib2 (d7) = 0 output peak current < 250 ma - open load (d5 = 1) output peak current > 500 ma - normal load (d5 = 0) channel lf (ch1) current detection ib2 (d7) = 1 output peak current < 125 ma - open load (d5 = 1) output peak current > 250 ma - normal load (d5 = 0) d4 channel lf (ch1) turn-on diagnostic (d4 = 0) permanent diagnostic (d4 = 1) - d3 channel lf (ch1) normal load (d3 = 0) short load (d3 = 1) - d2 channel lf (ch1) turn-on diag.: no open load (d2 = 0) open load detection (d2 = 1) offset diag.: no output offset (d2 = 0) output offset detection (d2 = 1) -
docid025599 rev 5 33/42 tda75610slv software specifications 41 d1 channel lf (ch1) no short to vcc (d1 = 0) short to vcc (d1 = 1) - d0 channel lf (ch1) no short to gnd (d1 = 0) short to gnd (d1 = 1) - table 9. db1 (continued) bit instruction decoding bit table 10. db2 bit instruction decoding bit d7 offset detection not activated (d7 = 0) offset detection activated (d7 = 1) - d6 x - d5 channel lr (ch2) current detection ib2 (d7) = 0 output peak current < 250 ma - open load (d5 = 1) output peak current > 500 ma - normal load (d5 = 0) channel lr (ch2) current detection ib2 (d7) = 1 output peak current < 125 ma - open load (d5 = 1) output peak current > 250 ma - normal load (d5 = 0) d4 channel lr (ch2) turn-on diagnostic (d4 = 0) permanent diagnostic (d4 = 1) - d3 channel lr (ch2) normal load (d3 = 0) short load (d3 = 1) - d2 channel lr (ch2) turn-on diag.: no open load (d2 = 0) open load detection (d2 = 1) permanent diag.: no output offset (d2 = 0) output offset detection (d2 = 1) - d1 channel lr (ch2) no short to vcc (d1 = 0) short to vcc (d1 = 1) - d0 channel lr (ch2) no short to gnd (d1 = 0) short to gnd (d1 = 1) -
software specifications tda75610slv 34/42 docid025599 rev 5 table 11. db3 bit instruction decoding bit d7 standby status (= ib2 - d4) - d6 diagnostic status (= ib1 - d6) - d5 channel rf (ch3) current detection ib2 (d7) = 0 output peak current < 250 ma - open load (d5 = 1) output peak current > 500 ma - normal load (d5 = 0) channel rf (ch3) current detection ib2 (d7) = 1 output peak current < 125 ma - open load (d5 = 1) output peak current > 250 ma - normal load (d5 = 0) d4 channel rf (ch3) turn-on diagnostic (d4 = 0) permanent diagnostic (d4 = 1) - d3 channel rf (ch3) normal load (d3 = 0) short load (d3 = 1) - d2 channel rf (ch3) turn-on diag.: no open load (d2 = 0) open load detection (d2 = 1) permanent diag.: no output offset (d2 = 0) output offset detection (d2 = 1) - d1 channel rf (ch3) no short to vcc (d1 = 0) short to vcc (d1 = 1) - d0 channel rf (ch3) no short to gnd (d1 = 0) short to gnd (d1 = 1) -
docid025599 rev 5 35/42 tda75610slv software specifications 41 table 12. db4 bit instruction decoding bit d7 thermal warning 2 active (d7 = 1), t j = 145 c (typ) - d6 thermal warning 3 active (d6 = 1) t j = 125 c (typ) - d5 channel rr (ch4) current detection ib2 (d7) = 0 output peak current < 250 ma - open load (d5 = 1) output peak current > 500 ma - normal load (d5 = 0) channel rr (ch4) current detection ib2 (d7) = 1 output peak current < 125 ma - open load (d5 = 1) output peak current > 250 ma - normal load (d5 = 0) d4 channel rr (ch4) turn-on diagnostic (d4 = 0) permanent diagnostic (d4 = 1) - d3 channel r (ch4) r normal load (d3 = 0) short load (d3 = 1) - d2 channel rr (ch4) turn-on diag.: no open load (d2 = 0) open load detection (d2 = 1) permanent diag.: no output offset (d2 = 0) output offset detection (d2 = 1) - d1 channel rr (ch4) no short to vcc (d1 = 0) short to vcc (d1 = 1) - d0 channel rr (ch4) no short to gnd (d1 = 0) short to gnd (d1 = 1) -
examples of bytes sequence tda75610slv 36/42 docid025599 rev 5 11 examples of bytes sequence 1 - turn-on diagnostic - write operation 2 - turn-on diagnostic - read operation the delay from 1 to 2 can be selected by software, starting from 1ms 3a - turn-on of the power amplifier with 26db gain, mute on, diagnostic defeat, cd = 2% . 3b - turn-off of the power amplifier 4 - offset detection procedure enable 5 - offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (d2 of the bytes db1, db2, db3, db4) . ? the purpose of this test is to check if a d. c. offset (2v typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins. ? the delay from 4 to 5 can be selected by software, starting from 1ms start address byte with d0 = 0 ack ib1 with d6 = 1 ack ib2 ack stop start address byte with d0 = 1 ack db1 ack db2 ack db3 ack db4 ack stop start address byte with d0 = 0 ack ib1 ack ib2 ack stop x0000000 xxx1xx11 start address byte with d0 = 0 ack ib1 ack ib2 ack stop x0xxxxxx xxx0xxxx start address byte with d0 = 0 ack ib1 ack ib2 ack stop xx1xx11x xxx1xxxx start address byte with d0 = 1 ack db1 ack db2 ack db3 ack db4 ack stop
docid025599 rev 5 37/42 tda75610slv package information 41 12 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark. figure 42. flexiwatt27 (horizontal) me chanical data and package dimensions '!0'03 9 + + + + 9 % ' / / / ',0 pp lqfk 0,1 7<3 0$; 0,1 7<3 0$; $       %         & '   (       )    *       *       +        +   +   +   /              / /              / /   /       /       0       0   0   1   3       5   5   5   5   5   9 ? 7\s 9 ? 7\s 9 ? 7\s 9 ? 7\s  gdpedusurwxvlrqqrwlqfoxghg  proglqjsurwxvlrqlqfo xghg 287/,1($1' 0(&+$1,&$/'$7$ )oh[lzdww +rul]rqwdo & 9 & * ) * 5 5 5 9 9 1 5 / / 5 5 0 0 0 9 3 / / (
package information tda75610slv 38/42 docid025599 rev 5 figure 43. flexiwatt27 (vertical) mechanical data and package dimensions /54,).%!.$ -%#(!.)#!,$!4! $)- mm inch -). 490 -!8 -). 490 -!8 !       "       #   $       %       &   '       '       (       (   (   (   ,       ,       ,       ,       ,   ,   -       -       .   /   2   2   2   2   2   6 ? 7\s 6 ? 7\s 6 ? 7\s 6 ? 7\s  dam barprotusionnotincluded  moldingprotusionincluded &lexiwattvertical ( 2 ' 6 6 ' , ( ( & - , &,%8-% 6 / , , ( 2 . 6 2 2 2 # " , - 2 , 2 2 % $ ! 6 6  0in '!0'03
docid025599 rev 5 39/42 tda75610slv package information 41 figure 44. flexiwatt27 (smd) mechanical data and package dimensions      '!0'03 $)- mm inch -). 490 -!8 -). 490 -!8 !   "       #   $   %       &

      '
      '       '
      (

      (   (   (   ,

      ,        ,       ,       ,       ,       ,       -   .   .       .
      0
      2   2   2       2       2   4
    aaa
  6 ? ? 6 ? ? 6 ? ? ? ? ? ? ? 6 ? ? ? ? ? 6 ? ? 6 ? ? 
'oldenparameters 

n$imensionh&vdoesntincludedam barprotrusion n$imensions(vandh,includemoldflashorprotrusions &lexiwatt 3-$ /54,).%!.$ -%#(!.)#!,$!4! # 9 9 9 9 9 9 9 + + + 5 5 1 5 / / / + $ ' & % 7 9 67$1'2)) 9 'hwdlo$ 5rwdwhg?&&: 6($7,1*3/$1( *$8*(3/$1(  6 6 ddd / 1 1 3 0 / 9 5 5 / /hdg /hdg ( ) 6hhghwdlo$ * * *
package information tda75610slv 40/42 docid025599 rev 5 figure 45. powerso36 (slug up) mechanical data and package dimensions /54,).%!.$ -%#(!.)#!,$!4 ! $)- mm inch -). 490 -!8 -). 490 -!8 !     !     !     !   a     b     c     $     $     $   %     %     %   %     %     e   e   '     (     h   ,     .  ? ? s ? ?  h$and%vdonotincludemoldflashorprotusions -oldflashorprotusionsshallnotexceedmmv   .ointrusionallowedinwardstheleads 0ower3/3,5'50 ' '!0'03
docid025599 rev 5 41/42 tda75610slv revision history 41 13 revision history table 13. document revision history date revision changes 29-nov-2013 1 initial release. 10-feb-2014 2 updated section 9.1: i 2 c programming/reading sequences on page 29 . 19-mar-2014 3 updated figure 2 and figure 3 . 28-apr-2014 4 updated section 9.2: address selection and i 2 c disable on page 29 . 19-sep-2014 5 updated section 9.1: i 2 c programming/reading sequences on page 29 .
tda75610slv 42/42 docid025599 rev 5 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2014 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of TDA75610S-8ZX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X